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Abstract

Numerical simulations of the thermocapillary motion of a pair of two- and three-dimensional fully

deformable bubbles and drops are presented. The Navier–Stokes equations coupled with the energy con-

servation equation are solved by a Front Tracking/Finite Difference Method. The material properties of the

drop/bubble fluid and the ambient fluid are different, and surface tension depends on the temperature. At

finite Reynolds (Re) and Marangoni (Ma) numbers, the results show that bubbles and light drops line up
perpendicular to the temperature gradient, while spacing themselves evenly across the channel. This con-

trasts with the zero Reynolds and Marangoni previous results where the velocity of each bubble is unaf-

fected by interactions between bubbles.
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1. Introduction

Bubbles and drops suspended in a fluid with a temperature gradient will move toward the hot
region due to thermocapillary forces. Surface tension generally decreases with increasing tem-
perature and the non-uniform surface tension at the fluid interface leads to shear stresses that act
on the outer fluid by viscous forces, thus inducing a motion of the fluid particle (a bubble or a
drop) in the direction of the thermal gradient. In space, where buoyancy forces are negligible,
thermocapillary forces can be dominant and can lead to both desirable and undesirable motion of
fluid particles. Space-based containerless processing of materials such as glass is believed to have
the potential of producing very pure materials (Uhlmann, 1982) and thermocapillary migration
*
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may provide mechanisms to remove gas bubbles from the melt. Control of vapor bubbles forming
in both the fuel systems of liquid-rockets (Ostrach, 1982) and the cooling system of space habitats
may be achievable using thermocapillary migration. Thermocapillary migration may also lead to
accumulation of gas bubbles on the hot surface of heat exchangers, therefore reducing their ef-
ficiency. In practical applications, it is frequently necessary to deal with a large number of bubbles
or drops and their collective behavior may differ substantially from what one might expect based
on results for a single particle.
Thermal migration of gas bubbles was first examined experimentally by Young et al. (1959)

who found an analytical expression for the terminal velocity of a single spherical drop in the limit
of negligible convective transport of momentum and energy. The migration velocity of a non-
deformable gas bubble for small but non-zero convective heat transfer in the limit of zero Rey-
nolds number was obtained by Subramanian (1981) using asymptotic expansion technique.
Subramanian (1983) later extended this work to liquid drops. Balasubramaniam and Chai (1987)
gave an exact solution for the migration velocity of a single drop in the limit of negligible con-
vective transport of energy and Shankar and Subramanian (1988) found the thermocapillary
migration of a spherical gas bubble in the limit of zero Reynolds number at values of the Ma-
rangoni number ranging from 0 to 200 using a finite difference method to solve the energy
equation. Szymczyk and Siekmann (1988) computed the thermocapillary motion of a gas bubble
accounting fully for the convective transport of energy and momentum but assuming a non-

deformable bubble. This work was then extended by Balasubramaniam and Lavery (1989) who
found the terminal velocity of an isolated non-deformable axisymmetric spherical bubble for a
large range of the governing non-dimensional numbers. Both of these studies show that the scaled
terminal velocity is a decreasing function of Ma at fixed Re, and an increasing function of Re at
fixed Ma. Haj-Hariri et al. (1990) calculated analytically the correction of the thermocapillary
velocity of a drop due to small inertial effects. The effect of surface deformation on the terminal
velocity of a single bubble was investigated numerically by Chen and Lee (1992) who concluded
that surface deformation considerably reduces the terminal velocity. Computational results for a
gas bubble, similar to those of Balasubramaniam and Lavery have also been obtained by Treuner
et al. (1996). Balasubramaniam and Subramanian (1996) found analytically that the thermo-
capillary migration velocity of a bubble approaches a non-zero asymptotic limit as the Marangoni
number goes to infinity, regardless of the value of the Reynolds number. Haj-Hariri et al. (1997)
found the migration velocity of an isolated drop for different governing parameters allowing
deformation. Although their computations were three-dimensional, the steady drop shapes were
always axisymmetric, being oblate or prolate depending on the density ratio. Welch (1998) re-
ported the effect of non-dimensional numbers on the transient thermocapillary migration of a
deformable bubble and concluded also that the deformation reduces the terminal velocity. For
non-zero values of non-dimensional parameters, it was reported that the terminal velocity of the
bubble decreases as the deformation increases. Ma et al. (1999) analyzed the thermocapillary
motion of an non-deformable single drop, and concluded that the scaled migration velocity de-
creases with Ma, reaches a minimum, and then increases with Ma when Ma is large enough.
The behavior of a single fluid particle in a temperature gradient is reasonably well understood.

The terminal velocity of a gas bubble in an unbounded domain decreases rapidly with increasing
capillary number, increases very weakly with increasing Reynolds number, and decreases with
increasing Marangoni number. On the other hand, the terminal velocity of a single drop first
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decreases with increasing Marangoni number, attains a minimum and then increases with a
further increase in the Marangoni number. The terminal velocity of a single bubble decreases with
increasing capillary number (Ca) while drops deform oblate or prolate depending on density
ratio. While considerable effort has been devoted to the study of the thermocapillary migration of
a single fluid particle, only a few researchers have looked at the collective behavior of two or
more particles. Meyyapan et al. (1983) investigated analytically the motion of two non-
deformable bubbles, moving along their lines of center, and found that in the limit of zero Rey-
nolds and Marangoni numbers each bubble moves with the velocity of an isolated single bubble.
In the case of unequal sized bubbles, the smaller one always moves faster than a single isolated
bubble of the same size and the larger one moves slightly slower than a single bubble. Meyyapan
and Subramanian (1984) extended the analysis of Meyyapan et al. (1983) to the motion of two
bubbles oriented arbitrarily with respect to the temperature gradient and showed that equal size
bubbles move with the velocity of a single isolated bubble. This work was generalized to arbitrary
number of equal size bubbles by Acrivos et al. (1990) who showed that each bubble moves
completely independently of the other bubbles. This remarkable result is, however, restricted to
zero Reynolds and Marangoni numbers. The motion of two liquid drops oriented arbitrarily with
respect to a temperature gradient was examined analytically by Anderson (1985) in the zero
Reynolds and Marangoni number limit. He found that the terminal velocity of each drop is
affected by the viscosity, conductivity, size ratio, and the distance between drops. For the special
case of equal size gas bubbles, he confirmed the finding of Meyyapan and Subramanian (1984).
By using the two-drop solution, he also showed that the mean velocity of a droplet suspension is
lower than for a single drop. Keh and Chen (1990) considered the axisymmetric thermocapillary
motion of two spherical droplets moving along their line of centers in a creeping flow. They
showed that two identical liquid droplets migrate faster than a single drop of the same size. For
two gas bubbles with equal radii, there was no interaction for all separation distances in
agreement with Meyyapan and Subramanian (1984). Later Keh and Chen (1992) investigated the
axisymmetric migration of a chain of spherical drops and gas bubbles along their line of centers.
In the case of multiple gas bubbles, it was demonstrated again that the migration velocity of each
bubble is unaffected by the presence of the other bubbles, if the bubbles are of the same size. Wei
and Subramanian (1993) investigated theoretically the quasi-static thermocapillary migration of a
chain of two and three spherical bubbles for zero Marangoni and Reynolds numbers. Keh and
Chen (1993) considered the migration of drops oriented arbitrarily with respect to the temper-
ature gradient in the limit of zero Marangoni and Reynolds numbers. Unlike drops moving along
their line of centers (examined by Keh and Chen (1990)), drops moving with their line of centers
perpendicular to the temperature gradient migrate slower than a single drop. For early studies of
the thermocapillary motion of a single bubble or drop, as well as a discussion of experimental
studies the reader is referred to the review papers by Subramanian (1992) and by Wozniak et al.
(1988).
The investigations of interactions of bubbles and drops discussed above have all been limited to

zero Reynolds and Marangoni numbers. In this paper we present a computational study of the
thermocapillary migration of two fully deformable bubbles and drops for non-zero values of the
Reynolds and Marangoni numbers. A few preliminary results were reported in Nas and Try-
ggvason (1993) for two-dimensional fluid particles and the method is extended here for fully
deformable three-dimensional fluid particles.
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2. Formulation and numerical method

2.1. Governing equation

The physical problem and the computational domain are sketched in Fig. 1. The domain is
periodic in the x-direction and bounded by rigid walls in the z-direction. The material properties of
the fluid particle are denoted by the subscript i and the properties of the ambient fluid are denoted
by the subscript 0. The top wall is hot and the bottom wall is cold, and initially the temperature
varies linearly in the z-direction.
The Navier–Stokes questions are valid for both fluids, and a single set of equations can be

written for the whole domain as long as the jump in viscosity and density is correctly accounted
for and surface tension is included. The two-dimensional Navier–Stokes equations written in
conservation form are
Fig. 1

and T
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where the last term is the surface tension acting on the interface, included as a body force by
representing it as a delta function. Here u is the velocity field, p is the pressure, q is the density, l is
the viscosity, r is the surface tension, t is a unit tangent vector, s is the arc length along the in-
terface, d is a two or three-dimensional delta function, xf is the position of the interface, and the
integral is over the interface separating the fluids.
The energy equation is
qcp
oT
ot

�
þr � uT

�
¼ r � ðkrT Þ; ð2Þ
. The computational domain. The top and bottom walls are no-slip boundaries with constant temperature Thot
cold, and the horizontal boundaries are periodic.
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where T is the temperature and k and cp are the coefficients of heat conduction and heat capacity,
respectively, and heat generation is assumed to be negligible. Both fluids are immiscible and the
material properties are constant in each fluid. The equations of state for density, viscosity, heat
capacity, and heat conduction are therefore:
Dq
Dt

¼ 0; Dl
Dt

¼ 0; Dk
Dt

¼ 0; Dcp
Dt

¼ 0; ð3Þ
where ðD=DtÞ ¼ ðo=otÞ þ u � r is the substantial derivative. The incompressibility constraint gives
a solenoidal velocity field
r � u ¼ 0: ð4Þ

Combining the momentum equation and the incompressibility condition leads to a non-separable
elliptic equation for the pressure.
The surface tension is taken to be a linearly decreasing function of the temperature,
r ¼ r0 þ rT ðT0 � T Þ; ð5Þ

where
rT ¼ � dr
dT

¼ constant ð6Þ
and r0 is the surface tension at a reference temperature T0. The coefficient rT is positive for most
fluids and it, in general, depends on temperature. However, the assumption of a constant rT

provides a good approximation in a range of small temperature variation.
The flow is governed by a, r0, l0, q0, cp0, k0, li, qi, cpi, ki, rT , and rT1 where a is the radius of

the initially spherical fluid particle and rT1 is the temperature gradient in the ambient fluid far
from the fluid particle. We first define a reference velocity Ur ¼ ðrT a=l0ÞjrT1j and a reference
time scale tr ¼ a=Ur, and then the governing non-dimensional numbers are given by
Ma ¼ Ura
a0

; Re ¼ Ura
m0

; Ca ¼ Url0
r0

; q
 ¼ qi
q0

; l
 ¼ li
l0

; c
p ¼
cpi
cp0

; k
 ¼ ki
k0
; ð7Þ
where a0 ¼ k0=ðq0cp0Þ and m0 ¼ l0=q0 are the thermal diffusivity and the kinematic viscosity of the
ambient fluid, respectively. Ma is the Marangoni number, Re is the Reynolds number, and Ca is
the capillary number. These three non-dimensional numbers are based on the properties of the
ambient fluid. Sometimes the Prandtl number, Pr0 ¼ m0=a0 is used instead of Re. In the limit of
zero capillary, Reynolds, and Marangoni numbers, the terminal velocity of a single gas bubble in
unbounded fluid is half of the reference velocity, Ur. While most analytical and numerical studies
on thermocapillary motion have been confined to these limits, we do not make any such as-
sumption here.

2.2. Numerical method

The numerical technique used for the simulations presented in this paper is the front tracking/
finite difference method for multi-fluid flows developed by Unverdi and Tryggvason (1992a,b). To
solve the Navier–Stokes equations we use a fixed, regular, staggered grid and discretize the mo-
mentum equations using a conservative, second-order central difference scheme for the spatial
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variables and an explicit predictor–corrector, second-order projection time-integration scheme.
The interface is represented by discrete computational points that are moved by the fluid velocity
interpolated from the fixed grid. These points are connected to form a front that is used to keep
the density and viscosity stratification sharp, and to calculate surface tension. The pressure
equation is non-separable since the density varies and we used a multigrid package (MUDPACK
from NCAR, Adams, 1989) to solve the pressure equation.
In order to compute the temperature dependent surface tension, the temperature on the front is

interpolated from the fixed grid using the interpolation function described by Peskin (1977) and
the surface tension calculated by Eq. (5). In two-dimensional simulations, the net force on each
element is found directly by
Fs ¼
I
elem

o

os
ðrtÞds ¼ ðrtÞ2 � ðrtÞ1; ð8Þ
where the unit tangent vector t is computed by fitting a Lagrange polynomial to the end-points of
each element and the end points of the adjacent elements. For three-dimensional flow, the force is
found by
Fs ¼
I
elem

rt� nds: ð9Þ
Here t is a unit tangent vector along the edge of the triangular surface element, and n is a unit
normal vector to the same surface element. By finding the force directly, we explicitly enforce that
the integral over any portion of the surface gives the right value, and for closed surfaces, in
particular, the integral of the surface tension over the whole surface is exactly zero. The surface
forces acting on the interface are distributed to the neighboring fixed Eulerian grid points by the
same distribution function used to interpolate the temperature. The velocity field is then advected
using the pressure, viscous stresses and surface tension at each time step. The temperature field is
advected in time using central differencing for the spatial derivatives and the same second-order
time-stepping method used for the momentum equation. The numerical method has been im-
plemented for two-dimensional (plane or axisymmetric) and three-dimensional geometries. The
details of the present numerical method can be found in Tryggvason et al. (2001).
3. Results and discussion

For all the results presented here, uniform Cartesian grids are used. The computational domain
and the boundary conditions are sketched in Fig. 1. In both two- and three-dimensional cases, the
top and bottom boundaries are treated as no-slip walls and the temperature is fixed at the pre-
scribed wall temperatures. In other directions, periodic boundary conditions are used for both the
flow and temperature fields. Initially, the drops and bubbles are taken as infinitely long circular
cylinders in two-dimensional cases and as spheres in three-dimensional cases. The fluid is initially
at rest and the temperature linearly increases from the cold bottom wall toward the hot top wall.
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3.1. Resolution test and validation

The method described above is first applied to several test cases in order to establish the ac-
curacy of the numerical algorithm. To check the sensitivity of the results to grid refinement, the
migration of a two-dimensional light drop is computed until it reaches a steady-state for two sets
of the governing parameters. For the first case the non-dimensional numbers are chosen as
Re ¼ 2:5� 10�3, Ma ¼ 2:5� 10�3 and Ca ¼ 10�3, and the ratios of the material properties of the
drop to that of the ambient fluid are all set equal to 0.5. The computational domain is a square
extending four drop radii in each direction and we use grids with 32� 32, 64� 64 and 128� 128
points. This corresponds to 16, 32, and 64 grid points per drop, respectively. Fig. 2 shows the
migration velocity of the drop versus time for these three cases. Note that, in all the results
presented in the paper, the migration velocity is simply taken as the drop velocity in z-direction
(denoted by V ) since the other components of the drop velocity are about an order of magnitude
smaller then V , and it is non-dimensionalized by the reference velocity, i.e., V 
 ¼ V =Ur. As the
grid resolution is increased, the terminal velocities converge and the difference in terminal ve-
locities calculated with 64� 64 and 128� 128 grids is below 2%. For the second test case, the non-
dimensional parameters are chosen as Re ¼ 5, Ma ¼ 20, and Ca ¼ 0:01666, the material property
ratios are set to 0.5, and the computational domain is a rectangle of size 4� 8 drop radii. Fig. 3
shows the migration velocity of the drop versus time, computed using 32� 64, 64� 128 and
128� 256 grid points. The terminal velocities converge as the resolution is increased, and the
difference between the results on the finest grids is very small (about 0.6%). The difference in the
terminal velocities computed with 16 and 32 grid points per drop diameter resolution is about
2.1%. Therefore, the 32 grid points per drop/bubble diameter resolution is chosen for most of
the simulations presented here in order to save computational resources. Where only qualitative
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Fig. 2. Resolution test for a single two-dimensional drop in a computational domain with 4 drop radii in each co-

ordinate direction. The migration velocity of the drop is plotted versus time for three grid resolutions corresponding to

16 (––), 32 (- - -) and 64 (� � �) grid points per drop diameter, respectively. Re ¼ Ma ¼ 2:5� 10�3, Ca ¼ 10�3, and the
material property ratios are 0.5.
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information is required, as few as 16 grid points per drop/bubble diameter can be used as the
relative percentage error is approximately 3% compared to the finest grid computation.
To test the implementation of the code, we have compared the migration velocity of a fully

three-dimensional drop to analytical results in the creeping flow limit. For zero Reynolds and
Marangoni numbers, Young et al. (1959) found that the scaled terminal velocity of a spherical
drop is
VYGB ¼ 2

ð2þ k
Þð2þ 3l
Þ : ð10Þ
Here k
 is the ratio of the heat conductivity of the drop to that of the ambient fluid and l
 is the
ratio of the viscosities. For a gas bubble, this formula reduces to VYGB ¼ 0:5 in the limit of zero
conductivity and viscosity ratios. In Fig. 4, the terminal migration velocity of a drop with
Re ¼ 2:5� 10�3, Ma ¼ 2:5� 10�3, Ca ¼ 10�3, and k
 ¼ l
 ¼ 0:5 is plotted versus the scaled dis-
tance H ¼ h=a where h is the distance between the wall and the drop centroid. For these property
ratios Eq. (10) gives VYGB ¼ 0:228 for the creeping flow limit (dashed horizontal line). In all cases
the drop is resolved by about 32 grid points per diameter. The wall effects are reduced as the
computational domain is increased while keeping the number of the grid points per drop diameter
the same, the numerical results approach the analytical solution for a non-deformable drop in an
unbounded domain. The convergence is shown in Fig. 4.

3.2. Two-dimensional studies of two bubbles

The interaction of two fluid particles is generally a fully three-dimensional problem, although
the in-line interaction of particles can be examined in an axisymmetric geometry. Since fully three-
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dimensional computations are fairly expensive, we have done a number of two-dimensional
simulations to develop insight into how the particles interact and how the interactions depend on
the governing parameters. These simulations do not give results that can be expected to be in
quantitative agreement with experiments, but as three-dimensional simulations presented later in
the paper demonstrate, the qualitative behavior is well predicted.
First, we explore the motion of gas bubbles where the material properties of the fluid particle

are small compared to the ambient fluid. We choose the ratio of material properties to be 1/25.
Further reduction does not change the results in any significant way, but the required compu-
tational time increases. The other governing parameters are Re ¼ Ma ¼ 40 and Ca ¼ 0:041666.
The computational domain is 8� 16 bubble radii and the resolution is 128� 256 grid points. The
bubble on the left is initially at ðx=a; z=aÞ ¼ ð2:9; 4:0Þ, and the one on the right is at
ðx=a; z=aÞ ¼ ð5:1; 5:8Þ. Fig. 5 shows the results at four different times. The top row shows the
bubbles and the isotherms and the bottom row shows the bubbles and streamlines in a frame of
reference moving with the bubble on the right. As the bubbles start to move, hot fluid is drawn
down between the bubbles, increasing the temperature difference across the left bubble and re-
ducing the temperature difference across the right bubble. The bubble on the left therefore catches
up with the bubble on the right and moves slightly ahead. As it does so, the high velocity between
the bubbles draws hot fluid in between them and the bubbles move toward each other. Eventually
the bubbles touch and although the bubbles are not allowed to coalesce, they do block any flow of
ambient fluid between them. Hotter fluid therefore flows around the pair and the bubbles move
away from each other. Both bubbles drift to the right and in the third frame the bubble initially on
the right moves across the periodic vertical boundaries. The bubble coming from the left initially
moves toward the other bubble, but in the last frame, when the bubbles are just about to hit the
top wall, they move away from each other.



Fig. 5. Isotherms (top) and streamlines (bottom) for selected frames from the computation of two bubble interaction.

50 equally spaced isotherms and 40 streamlines, in a frame of reference moving with the bubble on the right, are shown.

Time progresses from left to right. The non-dimensional times, t
 are 3.8, 25.3, 69.5 and 107.5, and Re ¼ Ma ¼ 40,
Ca ¼ 0:04166, and material property ratios are 1/25.
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The scaled migration velocity of each bubble versus the non-dimensional time is plotted in Fig.
6(a). In this figure, the dotted line labeled by ‘‘centroid’’ refers to the scaledmigration velocity of the
center of mass of the bubble system. After the bubbles start to interact, the bubble on the left is
accelerated, but the bubble on the right is slowed down. Indeed, the bubble on the right moves away
from the hot wall for a short period. The velocities are then approximately equal, although
the bubble initially on the right moves slightly faster as it catches up again with the other bubble.
The vertical separation of the bubbles is plotted versus their horizontal separation in Fig. 6(b). The
bubbles first move straight toward the hot wall. After the bubble initially on the left has moved
slightly ahead of the bubble on the right, they start tomove apart. Since the bubbles hit the top wall,
they have not reached a steady-state motion when the simulation is stopped, but one can speculate
that they would eventually move side by side, evenly spaced across the computational domain.
We have repeated these computations for various Reynolds and Marangoni numbers to ex-

amine the effects of these numbers on the migration of the bubbles. In Fig. 7, the vertical sepa-
ration is plotted versus the horizontal separation for the same initial bubble location as in Fig. 5.
The bubble initially further away from the hot wall moves faster in all cases and overtakes the
other bubble. The bubbles then drift apart, except in the Re ¼ Ma ¼ 10 case where they move
together. With the exception of low Re and Ma case, the results are very similar to the
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Re ¼ Ma ¼ 40 case. This suggests that the tendency of bubbles to line up approximately evenly
spaced, perpendicular to the temperature gradient is not very sensitive to the exact value of the
governing parameters.
3.3. Light drops

Next, we examine a fluid pair where the material properties of the light drop are half of those of
the ambient fluid. All other parameters are the same as in the simulation shown in Fig. 5. Fig. 8



Fig. 8. Isotherms (top) and streamlines (bottom) for selected frames from the computation of two drop interaction. 50

equally spaced isotherms and 40 streamlines, in a frame of reference moving with the drop on the right, are shown. Time

progresses from left to right. The non-dimensional times, t
 are 20, 40, 80, and 100. Re ¼ Ma ¼ 40, Ca ¼ 0:04166, and
material property ratios are 0.5.
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shows the drops and the isotherms (top row) and the streamlines with respect to a frame moving
with the drop on the right (bottom row) at four different times. The evolution for this case is
similar to what is seen for the bubbles in the previous section: The temperature change across the
drop on the left is increased and the change across the right drop is decreased as the left drop
catches up with the drop on the right. After the drops first move toward each other, they then
separate since no fluid can flow between them. The drops then migrate side by side, almost
equispaced across the channel. The final equilibrium configuration can be explained by the fact
that once the drops are side by side and moving toward hot wall, the ambient fluid has to flow
down between them to satisfy continuity and when the spacing between the drops is uneven there
is greater flow through the larger spacing. Since the downward moving fluid is hotter, the iso-
therms are pushed farther down in the large space than in the small space. Since the drops move
from colder regions to hotter ones, this leads to a lateral motion (in addition to the motion toward
the hot wall) where the small space becomes larger and the large space becomes smaller until the
drops have arranged themselves in a horizontal array with equal spaces between them. Fig. 9
shows the migration velocity (a) and the vertical separation of the drops versus horizontal sep-
aration (b) for the case in Fig. 8. This plot shows that the drop on the left migrates at an almost
steady state velocity after the drops are about half way toward the hot wall.
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separation distance. The small circle indicates the initial separation of the drops.

S. Nas, G. Tryggvason / International Journal of Multiphase Flow 29 (2003) 1117–1135 1129
Results for different Re and Ma numbers shown in Fig. 10 where the vertical separation is
plotted versus the horizontal separation exhibit similar behavior as seen in Fig. 9 and in all cases
the drops close the vertical gap between them. As the Reynolds and Marangoni numbers increase,
the interaction becomes stronger and the drops overshoot both the vertical and horizontal
equilibrium separation. Since the drops hit the top wall, the transients have not been completely
damped when the computations are terminated. The results suggest, however, that the drops will
eventually line up evenly spaced perpendicular to the temperature gradient.
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Fig. 10. Vertical separation versus horizontal separation of drops computed using several Re and Ma numbers. Other
parameters are the same as in Figs. 8 and 9. The small circle indicates the initial separation of the drops.
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The effect of the initial orientation of the drops on their motion is also investigated by varying
the gap between the drops and their angular position with respect to the initial temperature
gradient. These cases are identified with the letters (a)–(f) in Fig. 11 where the vertical separation
of the drops is shown versus the horizontal separation. The angle between the horizontal axis and
a line connecting the centers of the drops is p=8 for (a) and (d), p=4 for (b) and (e), and 3p=8 for
(c) and (f). The middle point of the line connecting the centers of the drops is at ðx=a; z=aÞ ¼ ð1; 1Þ.
For cases (a)–(c), the gap between the drops, center to center, is 2.5 times the drop radius and for
(d)–(f), this distance is three drop radii. The computations are performed in a domain which is
8� 16 drop radii, resolved by 128� 256 grid points. The non-dimensional numbers are Re ¼ 10,
Ma ¼ 10 and Ca ¼ 0:041666, and the material property ratios are equal to 0.5. As can be seen in
the cases (a), (b), (d) and (e), the drops that are initially well separated horizontally quickly close
the vertical gap and then drift apart. The drops in the cases (c) and (f), however, are initially
placed closely together in the horizontal direction and must therefore first move to the side, before
closing the vertical gap. In these cases the drops hit the top wall before the initial transient is
completed.
3.4. Simulations of two three-dimensional light drops

While the two-dimensional simulations reported in Sections 3.2 and 3.3 give considerable in-
sight into the interactions of two bubbles and light drops in thermocapillary motion, they do not
yield results that can be compared directly with experimental observations. Since the velocity
disturbance decays much slower in two-dimensions than in three dimensions, the two-dimensional
computations are likely to over-predict the strength of the interactions. To examine how the
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results change when the full three-dimensionality of the fluid particles is taken into account, some
three-dimensional simulations are performed. For all the cases considered, the capillary number
Ca ¼ 0:04166 and the ratio of material properties of the light drop to the properties of the am-
bient fluid is set to 0.5. The computational resolution is 64� 32� 128 grid points for a compu-
tational domain with dimensions x=a ¼ 5:71, y=a ¼ 2:86, and z=a ¼ 11:43. Fig. 12 shows the
drops along with the velocity and temperature in the middle cross-sectional plane at four different
times for two simulations: (a) Re ¼ 20 and Ma ¼ 60; (b) Re ¼ 60 and Ma ¼ 20. For cases (a) and
(b), the initial locations of the left and right drops are at ðx=a; z=aÞ ¼ ð1:71; 2:85Þ and
ðx=a; z=aÞ ¼ ð2:14; 2:0Þ, and ðx=a; z=aÞ ¼ ð2:14; 2:0Þ and ðx=a; z=aÞ ¼ ð3:57; 3:85Þ, respectively. For
Fig. 12. Velocity and temperature fields for selected frames from fully three-dimensional simulation of the migration of

two drops. The velocity field is shown at every other grid point in a plane through the middle of the computational

domain. Time progresses from left to right. (a) Top row: t
 are 5.71, 22.85 and 57.14, and Re ¼ 20,Ma ¼ 60; (b) Bottom
row: t
 are 3.5, 35.0 and 52.5, and Re ¼ 60, Ma ¼ 20. For both cases, Ca ¼ 0:04166 and the computational domain is
ðx=a; y=a; z=aÞ ¼ ð5:17; 2:86; 11:43Þ.
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both cases, the drops are located in the middle cross-sectional plane at y=a ¼ 1:43. In order to
show how the motion of the drops affects the temperature field, the drop contours and the iso-
therms in the middle cross-sectional plane are shown in Fig. 13 at the same times as in Fig. 12.
Initially, the light drops in Fig. 12(a) move rapidly toward the hot wall (top row), but then they

slow down and drift apart. They also become more horizontally aligned. However, since the initial
vertical separation was small, this motion is not very visible in Fig. 12(a). Fig. 13(a) shows that
heat conduction is slow compared to the time scale of the motion, so cold fluid is carried with the
drops toward the hot wall. The drops in Fig. 12(b) do not show the initially large velocity seen for
the drops in Fig. 12(a), but the reduction in vertical separation of the drops is much clearer here.
Since the Marangoni number is lower for the drops in Fig. 12(b) than in Fig. 12(a), the heat
conduction is high in case (b). Fig. 13(b) shows that the fluid in the drops is only slightly colder
than the surrounding fluid.
The velocity of the drops toward the hot wall is plotted versus time in Fig. 14. The velocities of

drops in Fig. 12(a) and (b) are shown in Fig. 14(a) and (b), respectively. The large initial velocity
of the drops in Fig. 12(a) is clearly visible in this plot and it is also clear that the drop on the left,
Fig. 13. Isotherms for selected frames from fully three-dimensional computation of migration of two drops. Time

progresses from left to right. (a) Top row: t
 are 5.71, 22.85 and 57.14, and Re ¼ 20, Ma ¼ 60; (b) Bottom row: t
 are
3.5, 35.0 and 52.5, and Re ¼ 60, Ma ¼ 20. For both cases, Ca ¼ 0:04166 and the computational domain is ðx=a;
y=a; z=aÞ ¼ ð5:17; 2:86; 11:43Þ.
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which was initially behind the drop on the right, has a slightly larger velocity. Near the end of the
simulation, where the drops are oriented nearly horizontally with respect to each other, the dif-
ference in the velocities is reduced. The velocities of the drops in Fig. 12(b) evolve differently.
There is no initial over-shoot and while the velocity of the left drop (initially behind) is larger, the
difference continues to increase. It is therefore likely that the left drop will eventually overtake the
right one and pass it.
In Fig. 15, the horizontal separation of the drops in Fig. 12, as well as for drops from a few

other three-dimensional simulations, is plotted versus the vertical separation. The horizontal
separation increases and the vertical separation decreases in all cases. Three simulations are
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and two different initial conditions.The small circles indicate the initial separation of the drops.
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started with a small vertical separation of the drops and all follow essentially the same path: First
there is a slight increase in the vertical separation and then a nearly monotonic approach to an
equilibrium position where the vertical separation is zero and the horizontal separation is about
half the x-dimension of the computational domain, except for the case of Ma ¼ 160 where drops
slightly overshoot. The physical parameters of the three-dimensional results correspond to the
two-dimensional simulations in Section 3.2, except that the initial locations of the drops are
slightly different. In the two-dimensional simulations, if the initial horizontal separation is larger
than about one drop radius, the vertical separation decreases. This is similar to the three-di-
mensional results, except that the two-dimensional vertical separation overshoots slightly and the
eventual separation is at about 3.5 drop radii. In the fourth case, where Re ¼ 60, the drops were
initially placed with a large vertical and a small horizontal separations. Therefore, the drop that is
initially behind must first move horizontally before it can catch up with the drop ahead. This
behavior is also seen in the two-dimensional results.
4. Conclusions

The thermocapillary migration of two fluid particles toward a hot wall has been examined for
non-zero values of the Reynolds and Marangoni numbers by numerical simulations and it is
found that the particles interact strongly. Although the fluid particles are allowed to deform, it is
observed that the light drop/bubble shapes change very little in all the cases considered here. The
particle initially closer to the cold wall moves faster than the particle initially closer to the hot wall
and in all cases it is found that the initially colder particle catches up with the hotter one. In some
cases it is clear that the fluid particles eventually line up perpendicular to the temperature gradient
and are evenly spaced. The strong interaction between fluid particles observed here contrast
strongly with the behavior of bubbles for zero Reynolds and Marangoni numbers, where there is
no interaction.
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